In this chapter , the stability judgements are proposed for the sps in four conditions respectively . they can offer the upper bound of the dead - time and the perturbed parameter . an application example shows that the judgements are easy to use 本章通過(guò)對(duì)一類奇異攝動(dòng)時(shí)滯不確定系統(tǒng)的研究,給出了該類系統(tǒng)在四種情況下出現(xiàn)參數(shù)范數(shù)有界攝動(dòng)時(shí)保證系統(tǒng)穩(wěn)定的時(shí)滯t和奇異攝動(dòng)參數(shù)。
Its biquadratic finite element approximation is considered and under the appropriately graded meshes , quasi - optimal order error estimates in the - weighted h ^ 1 - norm , up to a logarithmic factor in the singular perturbation parameter , are proved 然后,考慮此方程在分層網(wǎng)格剖分上的雙二次有限元逼近,在-加權(quán)h ^ 1 -模意義下得到了至多相差一個(gè)關(guān)于攝動(dòng)參數(shù)對(duì)數(shù)因子的擬最優(yōu)階收斂的誤差估計(jì)。
However , it is difficult to choose proper perturbation parameter in the process of applying this method . even in present day , there have not a dependable norm to confirm certain parameter and researcher often search it through engineering experience 但選擇攝動(dòng)參數(shù)卻是正則攝動(dòng)法求解過(guò)程中的一個(gè)比較困難的問(wèn)題,現(xiàn)在對(duì)于這一問(wèn)題仍然沒(méi)有一個(gè)一般的原則,而主要是利用經(jīng)驗(yàn)對(duì)該問(wèn)題進(jìn)行處理。
In the last , the problem of the perturbation of fuzzy reasoning is discussed in detail , and the maximum perturbation parameters for various methods of fuzzy reasoning is estimated according to the choice of conjunctive operator and implication operator 根據(jù)椎理規(guī)則中合取算子與蘊(yùn)涵算子的不同選取方式,對(duì)各種模糊推理方法的最大攝動(dòng)參數(shù)進(jìn)行了評(píng)估,為實(shí)際應(yīng)用中選擇恰當(dāng)?shù)哪:评矸椒ㄌ峁┝艘粋€(gè)準(zhǔn)則
By this method of analysis , researcher can get all of elastic characters without choosing proper perturbation parameter to create perturbation solution . since this method of analysis reduce the experience factors in the process of analysis , the results of it can be more reasonable 采用該方法求解板以及殼體的大撓度問(wèn)題,研究者無(wú)須具體選擇攝動(dòng)解的攝動(dòng)參數(shù)就能夠得出問(wèn)題的全部彈性特征,減少了在攝動(dòng)過(guò)程中的先驗(yàn)因素,使得求解結(jié)果更趨于合理。