A wavelet domain hidden markov tree ( hmt ) model is constructed to model statistical dependence and nongaussian statistics of wavelet coefficient . the estimate of hmt model parameters can be obtained by em algorithm 該方法通過小波域的隱markov樹( hmt )模型來描述小波系數的統計相關性和非高斯性,利用em算法獲得hmt模型參數的估計。
So we use blob - matching algorithm to get motion parameters and make use of em algorithm to classify these parameters . these algorithms do not use optical flow computation and affine transformation , so it smoothes the difficulty of calculation 本文采用em算法直接對塊匹配求得的運動參數進行分類,繞開光流計算和仿射變換,減小了計算量。
In this article , we apply em algorithm to estimating the values of the parameters of nhpp models . the estimating accuracy may be increased by this way . so the result software reliability analysis may be improved by this way too 最后本文應用文獻[ 33 ]中介紹的em算法于nhpp類模型的參數估計,以提高估計的精度,從而提高軟件可靠性分析的精確程度。
It follows from the general convergence theory that the em algorithm generally converge to a local maximum solution of the likelihood function and cannot be guaranteed to converge to a correct solution , i . e . , a consistent solution of the samples Em算法的一般收斂理論認為,算法只能收斂到似然函數的一個局部極大解,無法保證能夠收斂到與樣本的真實參數相一致的解上。
The distribution of mixture of densities is very popular in practice and the data subject to such a distribution can be viewed as a kind of incomplete data . so , the em algorithm for mixtures of densities , particularly for gaussian mixtures , is very important 由于概率混合體分布在實際應用中相當普遍并且服從于它的數據可以看作是一種不完全數據,依此建立的em算法一直受到人們的重視,特別是高斯混合體em算法。
Obtain the conclusion that em algorithm is better than direct algorithm . aimed at measuring the large - scale network , we analyze multicast - based loss inference used multiple points and introduce minimum variance weighted average and em algorithms , and compare the difference on accuracy and 以測量大規模網絡為目的,本文研究了多點多播測量技術,給出了多點多播的加權平均值算法和em算法,并比較了多點和單點在時間復雜性和估計值精度上的異同。
Workshop on generative - model based vision in conjunction with european conf . computer vision 2002 , copenhagen , denmark , june 2 , 2002 , pp . 107 - 113 . 9 bilms j . a gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models 在新提出的圖模型中,充分利用了邊緣紋理和形狀這兩種相互增強的觀測信息,同時提出了一種融合形狀和紋理觀測信息的參數估計算法,在多姿態的人臉定位問題中取得了很好的效果。
What flow is that , we use model simulation to analyze the em algorithm contraction ratio . through network simulating , we analyze the factors which can influence loss inference algorithm accuracy like measurement strategy or routing algorithm . we analyze the accuracy and contraction characteristic of multicast - based direct algorithm and em algorithm , and compare the error factor between them 實驗中通過網絡仿真模型,確定了em算法的收斂速率;研究了不同測量策略和路由器擁塞避免算法對丟包率推理算法準確率的影響;分析了單點多播的de和em算法準確性、收斂性等特征,通過比較兩種算法的統計誤差,得出em算法略優于de算法的結論。