Quadratic approximations in two dimensions 二維中的二次逼近法。
This paper researchs into the problem on fitting the shell flight - time of anti - aircraft gun by interpolation and quadratic approximation 摘要用插值擬合和最小二乘逼近擬合方法對高炮射彈飛行時間擬合問題進行了研究。
By analysing the compute result of the quadratic approximation formula , we educe the conclusion that 3 is the best rank code for the quadratic approximation formula 通過對最小二乘擬合公式實際計算結果的分析,得出了“擬合公式階數取3為最佳”的結論。
Using the conic function model local approximation , w . cdavidon ( 1980 ) proposed a class of iterative algorithms with modified matrix combining function value , furthermore under the theory d . c . sorensen has used local quadratic approximation method , then applying collinear scaling idea improving on the above algorithm and generalizing it , getting a class of collinear scaling algorithm , unifying former quasi - newton . in the paper , using local quadratic approximation method , the first , constructing the new collinear scaling gene , getting a class of the new collinear scaling algorithm with briefness and numerical stability , . , we discusses some properties of the algorithm and its local linear convergence , q - superlinear convergence and the whole convergence ; secondly we have made numerical experimentation and numerical analysis ; the last , we have done much discussion for collinear scaling idea and given the several new collinear scaling algorithm 本文的工作就是基于局部二次逼近原理,首先通過構造新的共線調比因子,得到了一類新的更簡潔,數值穩定性更好的共線調比算法,進而我們給出了本共線調比算法的局部收斂性,全局收斂性以及算法q -超線性速度的理論證明;其次,用經典的無約束優化五大考核函數就本共線調比算法進行了數值試驗和數值分析;最后,就局部二次逼近思想,進行共線調比算法思想進行更廣泛的討論,給出了幾個新共線調比算法。