cluster n. 1.叢集;叢;(葡萄等的)串,掛;(花)團;(秧)蔸;組。 2.(蜂、人等的)叢,群,群集。 3.【物理學】聚集,組件;【化學】類族,基;(原子)團;【天文學】星團。 4.【美軍】(表示又一個同等勛章的)金屬片。 5.【語音】音叢,音群,義叢,詞組。 6.集中建筑群〔在一大片土地上集中興建住宅,以提供較大的公共休息場所〕。 in a cluster 成串的;成團[群]的。 vi.,vt. (使)成群;(使)群集。 clustered column 【建筑】簇柱。
k K, k (pl. Ks, K's; ks, k's ) 1.英語字母表第十一字母。 2.K字形物體[記號]。 3.一個序列中的第十一〔若 J 略去則為第十〕。 4.【數學】與 Z 軸平行的單位矢量。 5.【化學】元素鉀(Potassium) 的符號〔由拉丁名 Kalium 而來〕。 6.〔K〕【氣象學】積云 (cumulus)的符號。 7.〔K〕【數學】常數(constant)的符號。 8.代表數字“千”(103)。 a salary of $ 14K = a salary of $ 14,000 一萬四千美元的薪金。 9.千〔電子計算機的存儲單位,相當于1024 二進位組或1000字符〕。 a computer memory of 64k 存儲量為 64k的計算機。 10.K形的。 11.第十一的〔若 J 略去,則為第十的〕。
On the improvement of k - means clustering algorithm 均值聚類算法的研究
A fast fractal image compression algorithm based on k - mean clustering optimization 均值聚類優化的快速分形圖像壓縮算法
First , the whole system was decomposed into several subsystems by adopting frizzy k - means cluster 首先,采用動態聚類方法,將整個系統分解為幾個子系統。
3 ) k - mean clustering algorithm is used classification . the category is two , according to the object and the experience knowledge 3 )應用無監督分類算法中k均值( k - means )聚類算法對輸入特征向量進行分類。
The euclidean distance is usually chosen as the similarity measure in the conventional k - means clustering algorithm , which usually relates to all attributes 傳統的k -均值算法選擇的相似性度量通常是歐幾里德距離的倒數,這種距離通常涉及所有的特征。
This paper studies using the k - means clustering algorithm to classified the obtained image , submits through two phases to retrieve the image and adjusts the weight using the relevant feedback method 本文研究利用k均值聚類方法對檢索得到的圖像進行分類,通過兩階段提交對圖像進行篩選,并利用相關反饋方法來調整權重。
The property of the recall - precision curve of a general retrieval algorithm and the k - means clustering method are used to realize the expansion according to the distance of image features of the initially retrieved images 擴展主要利用了一般檢索算法的查準率查全率曲線特點,對原始查詢結果的圖像特征距離應用k -均值聚類算法,確定多個查詢示例圖像。
Finally , according to the practical requirement of classification management to credit risk management , it uses k - means clustering method to cluster the evaluation result , and then get the credit ranks the small and middle enterprises belong to 最后,根據對信用風險管理應實行分級管理的實踐要求,利用k -平均聚類劃分法對信用風險評估結果進行聚類劃分,從而得到各中小企業所屬于的信用風險等級。
In this text , we first do some research on the genetic algorithm about clustering , discuss about the way of coding and the construction of fitness function , analyze the influence that different genetic manipulation do to the effect of cluster algorithm . then analyze and research on the way that select the initial value in the k - means algorithm , we propose a mix clustering algorithm to improve the k - means algorithm by using genetic algorithm . first we use k - learning genetic algorithm to identify the number of the clusters , then use the clustering result of the genetic clustering algorithm as the initial cluster center of k - means clustering . these two steps are finished based on small database which equably sampling from the whole database , now we have known the number of the clusters and initial cluster center , finally we use k - means algorithm to finish the clustering on the whole database . because genetic algorithm search for the best solution by simulating the process of evolution , the most distinct trait of the algorithm is connotative parallelism and the ability to take advantage of the global information , so the algorithm take on strong steadiness , avoid getting into the local 本文首先對聚類分析的遺傳算法進行了研究,討論了聚類問題的編碼方式和適應度函數的構造方案與計算方法,分析了不同遺傳操作對聚類算法的性能和聚類效果的影響意義。然后對k - means算法中初值的選取方法進行了分析和研究,提出了一種基于遺傳算法的k - means聚類改進(混合聚類算法) ,在基于均勻采樣的小樣本集上用k值學習遺傳算法確定聚類數k ,用遺傳聚類算法的聚類結果作為k - means聚類的初始聚類中心,最后在已知初始聚類數和初始聚類中心的情況下用k - means算法對完整數據集進行聚類。由于遺傳算法是一種通過模擬自然進化過程搜索最優解的方法,其顯著特點是隱含并行性和對全局信息的有效利用的能力,所以新的改進算法具有較強的穩健性,可避免陷入局部最優,大大提高聚類效果。