In recent years various methods of estimation about probability density function of random variable sequence that is independent and identically distributed ( abbreviated as iid . ) and large sample quality have been more discussed in research documentation )序列的概率密度函數的各種估計方法及其大樣本性質的研究文獻中已有很多討論,研究得最多的還是密度函數的核估計,如rosenblent , parzen , prakasarao和silverman等。
The obtained results in the paper are as follows : ( 1 ) the expansion of fourier series of orthogonal trigonometric polynomial for conditional mathematical expectation and function of random variable ; ( 2 ) the best approximation of trigonometric polynomial about another random variable for function of a random variable ; ( 3 ) the best approximation order of trigonometric polynomial for function of random variable 摘要獲得了如下結果: ( 1 )條件數學期望及隨機變量函數的三角多項式級數表達; ( 2 )一個隨機變量關于另一個隨機變量的三角多項式的最佳逼近; ( 3 )隨機變量函數被隨機變量三角多項式最佳逼近的階。
In the traditional reliability model , the probability density function of random variable is important . so , in chapter 2 , the methods to get probability density function of engineering random variable are discussed . three methods , which include approximate method , monte - carlo simulation method and multiple parameter method , are compared by some examples . in chapter 3 , some non - probabilistic reliability models are discussed 在傳統的概率可靠性模型中,變量的概率密度函數的確定非常重要,因此在本文第二章中,主要著力討論工程隨機變量概率密度函數的求解方法,說明原理,推導求解公式,并通過實際算例對近似解析法、 monte - carlo數字模擬法、多參數法三種方法進行對比。