In 1728 euler gave differential equations for geodesics on surfaces . 1728年,奧伊勒繪出了曲面上測地線的微方程。
We shall deduce the result from a lemma about euler trails in directed multigraphs . 我們用一個關于有向重圖中尤拉跡的引理來證明這個定理。
Euler then shows how he can get the differential equation whose solutions are called cylinderical waves . 然后,尤拉展示他怎樣得到其解稱為圓柱波的微分方程。
Neither euler nor lagrange envisioned the rich possibilities which their work on complex integers opened up . 無論Euler或Lagrange都沒有預想到他們關于復整數的工作所打開的豐富可能性。
This leads us to another contribution of leonhard euler to graph theory, namely euler's polyhedron theorem or simply euler's formula . 這是我們引向L尤拉對圖論的另一個貢獻,即尤拉多面體定理,或簡稱尤拉公式。
The differentiator series solution to euler equation 歐拉方程的微分算子級數解法
A bgk - type euler solver on unstructured adaptive meshes 型非結構化自適應算法
It is bring forward the discrete model of euler beam 提出了離散化的euler梁模型。
1929 hans karl august simon von euler - chelpin sweden 1929年漢斯馮奧伊勒一歇爾平瑞典