Since being proposed , it has become the research hotpot in the error - correct coding area 所以, turbo碼自提出以來,已經成為信道編碼研究的熱點。
Error - correcting codes work by adding extra information to original data 糾錯碼技術是一種通過增加一定的冗余信息來提高信息傳輸可靠性的有效方法。
In this paper , we study two kinds of error - correcting codes . one kind is cyclic code over finite chain rings , and the other is sdq ( b ) code over finite fields 本文研究了有限鏈環上的循環碼和有限域上的sd _ q ( b )碼這兩類糾錯碼。
In this scheme , rs code is selected as the main error - correcting code . its encoding / decoding algorithms and hardware implements are researched 同時,隨著對rs碼研究的深入、 rs編譯碼算法的改進和相關技術的發展, rs碼在實際中的應用也更加廣泛。
The technology of error correction is an important part of information theory . both theory and practice should be known by the people who research on error - correcting codes 糾錯碼技術是信息論的一個重要分支,研究糾錯碼是一項理論性與實踐性均很強的工作。
It also discusses the code and decode theory for rs error - correcting codes , then summarizing the design and debug experience for the rs ( 31 , 15 ) coder and decoder through fpga 文章中還討論了rs糾錯碼的編譯碼原理和算法,總結了基于fpga實現一個rs ( 31 , 15 )編碼和譯碼器的設計經驗和調試經驗。
Low density parity check codes are a class of linear block error - correcting codes that can be defined by the very sparse parity - check matrix . their error performance approach shannon limits Ldpc碼(低密度校驗碼)是一類可以用非常稀疏的奇偶校驗矩陣定義的線性分組糾錯碼,具有逼近香農限的性能。
In these years , many new technologies are developed and applied to joint coded modulation systems , such as new error - correcting codes , space - time modulation on mimo channels and iterative decoding algorithm 近年來,隨著新的糾錯編碼、 mimo空時調制以及迭代譯碼方式的出現,聯合編碼調制方案的設計正成為普遍關注的熱點。
Recently , much interest of the coding community has focused around a new family of error - correcting codes , called turbo codes , whose perfor - mances in terms of bit error rate ( ber ) are close to the shannon limit Turbo碼作為一種新型的糾錯編碼類型備受通信界的注目,它的糾錯能力能夠接近shannon極限。 turbo碼自1993年由c
This problem arises from the circuit layout of vlsi designs , interconnection networks , sparse matrix computations , error - correcting code designs , data structures , biology , etc , which has extensive backgrounds 圖的嵌入問題是從稀疏矩陣的計算、數據結構、 vlsi電子線路設計和分子生物學等問題中提取出來的數學模型,有著廣泛的應用背景。