In this paper , we not only illustrate the superiority of quadratic spline wavelet edge detection ' s arithmetic from experimental work , but also prove quadratic spline wavelet is optimum edge detection ' s arithmetic based on canny optimum criterions of edge detection 文中,我們不僅從實際工作中闡明了二次樣條小波邊緣檢測算子的優(yōu)越性,還從數(shù)學(xué)表達(dá)上推導(dǎo)了二次樣條小波是基于canny最優(yōu)準(zhǔn)則的最優(yōu)邊緣檢測算子。
In this paper , we define quadratic spline as wavelet , do the two dimentional dyadic wavelet transform on cell image , and get local modulus maxima from wavelet transform ' s results - modulus and angles , so we can find the cell image ' s edge image in each scales , at last , we compute optimum scale of cell image edge detection , and receive a good edge image which synthesize the characters in each scale 本文中我們用二次樣條小波作為小波基函數(shù),對細(xì)胞圖像進(jìn)行二維二進(jìn)小波變換,計算小波變換結(jié)果的局部模極大值點,得到各個尺度下的細(xì)胞圖像的邊緣,計算細(xì)胞圖像邊緣檢測的最優(yōu)尺度,最后得到綜合了各個尺度特征的較好的細(xì)胞圖像的邊緣。