Nonsingularity boundary integral equations for elastic plane problems 彈性力學平面問題的無奇異邊界積分方程
Recently , yamashita and fukushima [ 4 ] show that the sequence produced by the levenberg - marquardt method converges quadraticlly to the solution set of the equations , if the parameter is chosen as the quadratic norm of the function and under the weaker condition than the nonsingularity that the function provides a local error bound near the solution . however , the quadratic term has some unsatisfactory properties 最近yamashita & fukushima [ 4 ]提出,在弱于非奇異性條件的局部誤差界條件下,如果選取的迭代參數為當前迭代點處函數值模的平方,則levenberg - marquardt方法產生的迭代點列二階收斂于方程組的解集。
Transforming the problem of robust hurwitz and schur stability of interval system into checking the nonsingularity of a set of uncertain matrices , then establish necessary and sufficient conditions for the robust hurwitz and the robust schur stability of interval system base on - analysis . 3 . a new sufficient lmi condition for the robust stability is established with respect to polytopic uncertainty 把區間系統等價轉換為一參數擾動矩陣集,利用這個轉換我們把連續區間系統的魯棒hurwtiz穩定和離散區間系統的魯棒schur穩定的等價于一參數擾動矩陣集的魯棒非奇異問題,然后利用結構奇異值的定義,給出區間系統的魯棒hurwtiz穩定和魯棒schur穩定的結構奇異值的充分必要條件。