Sensitivity analysis in bilevel multiobjective optimization with perturbational parameters in lower level is considered , by using sensitivity analysis of set - valued optimization 摘要借助集值優(yōu)化問(wèn)題的靈敏度分析,討論了上層無(wú)擾動(dòng),下層帶擾動(dòng)參數(shù)的二層多目標(biāo)最優(yōu)化問(wèn)題的靈敏度分析。
Good simulation results are obtained by the appropriate choose of the state variance , definition of the external disturbance parameter , and adjustment of the coefficients parameter matrix 通過(guò)合理選擇狀態(tài)變量及定義外部擾動(dòng)參數(shù),以及對(duì)各系數(shù)矩陣參數(shù)的調(diào)節(jié)方法研究,得到了較好的仿真結(jié)果。
Furthermore , we employ iteration and predictor - corrector - approach to solve the nonlinear equations in order to implement the marching procedure . we investigate detailedly the process of the c - type instability for nonparallel boundary layers with three - dimensional disturbances . by investigating the nonparallel boundary layers of three - dimensional body , we 文中通過(guò)對(duì)三維物體的非平行邊界層穩(wěn)定性的研究,確定最不穩(wěn)定波的擾動(dòng)參數(shù)和最易失穩(wěn)的流向、展向位置;對(duì)三維擾動(dòng)的非平行非線(xiàn)性邊界層穩(wěn)定性的研究,得到更精確的擾動(dòng)放大因子值。
Through adopting a new method and analyzing massive sensitive analysis data , this thesis induces the “ uniformity ” rule in the uncertainty analysis under the same fluctuation scope condition , then through the deductive , cites a new variable named fluctuation index of eirr to represent the project ’ s ability of resisting risk 本文另辟蹊徑,通過(guò)對(duì)大量敏感性分析數(shù)據(jù)的分析,歸納出在同等浮動(dòng)幅度的條件下,不確定性分析中存在著“一致性”的規(guī)律;然后再通過(guò)演繹的方法,引入一個(gè)嶄新的變量? ?經(jīng)濟(jì)內(nèi)部收益率擾動(dòng)參數(shù)來(lái)代表項(xiàng)目抵抗風(fēng)險(xiǎn)能力大小。